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1 Introduction

The ultimate goal of developmental biology is to discover how one

cell with limited direct information can develop into a complex organism. Count-

less experiments have been done and several hypotheses have been put forward

to explain the differentiation, migration, growth and division of cells in early

plant and embryonic development. Mechanical, chemical and electrical mech-

anisms (and combinations of these) have been suggested as being responsible

for the aforementioned cellular behavior. Through developmental models and

computer simulations it is hoped that we can compliment traditional techniques

and gain a better understanding of how these mechanisms interact with each

other and influence cellular development.

Developmental processes can essentially be divided into three areas:

regional specification (pattern formation), differentiation and morphogenesis.

All three are equally important to the development of an organism. Regional

specification occurs in the earliest stages of development and refers to the pro-

cess by which cells in different regions choose different pathways of develop-

ment. In a sense differentiation and morphogenesis can be thought of as con-

sequences of regional specification. Cell differentiation occurs when a cell’s be-

haviour and developmental path changes from that of its ancestors through the

synthesis of different proteins. Morphogenesis is the synthesis of multicellu-

lar arrangements such as tissues and organs from a seemingly heterogeneous

group of cells. It is believed that morphogenesis is brought about by essen-

tially six cellular processes: the direction and number of cell divisions; cell shape

changes; cell migration; cell growth; cell death; and changes in the composition

of the cell membrane and extra-cellular matrix. These processes are regulated

by cell-cell communications which can occur through diffusible substances (hor-

mones, growth factors, morphogens), or direct physical contact [15, 31].

Biological experiments often require a substantial amount of planning

and necessitate meticulous care in their execution. While the planning stage

would still be an important component of the virtual experiment cycle, because

the plan could be adjusted quickly “on-the-fly”, an error or unexpected circum-

stance in the experiment would not mean as significant a time loss. In fact, one
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could restart the experiment with a modified plan from a known stable point

in the previous execution. A virtual experiment environment could also guar-

antee repeatability of results, allow the testing of a hypothesis on an isolated

cell configuration, and enable easy labeling or marking of significant features of

a cell configuration such as chemical concentrations and cell types, sizes, ages,

lineage, etc.

2 Thesis Statement

To provide an exploratory software environment that integrates all

important aspects of biological development for the simulation of multi-cellular

structure formation.

3 Research Description

3.1 General Description

The goal, as stated in the introduction, is to provide a software envi-

ronment that will be employed to elucidate the mechanisms of plant and em-

bryo development. In recent years, the focus of biological research has been in

the area of molecular biology with special attention being given to DNA and

its by-products. While such research is necessary to develop an understanding

of the processes involved in morphogenesis, it is essentially a bottom-up type

of approach. The inherent problem with such an approach is that there are a

great number of molecules to observe and not a clear path to the next level of

abstraction. We propose a tool to explore, in a top-down fashion, how cellu-

lar proteins combined with the physical properties of the cells can lead to some

observed developmental phenomena. Neither the top-down nor the bottom-up

approach will lead to a complete picture of morphogenesis, but the hope is that,

drawing from each other’s results, the full picture will emerge more quickly.

Lionel Harrison, in the introduction to Kinetic Theory of Living Pattern [17], gives

a nice overview of the two types of researchers (which he calls “splitters” and

“lumpers”).

In order for our research tool to be capable of assisting in the quest to

speed up the discovery process, it must meet a number of requirements. Firstly,
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the simulation concepts within the tool must be closely related to real biological

ones. This requirement is important to facilitate the construction of models and

the inferences made from them. Secondly, it must be accurate. It is essential

that the biologist using the tool trusts the results of the simulation. Thirdly, it

must be fast enough to be interactive. It is an unfortunate computing reality that

this requirement competes with the second. We will have to make some com-

promises to achieve reasonable response time, but each one should be assessed

carefully as to its impact on accuracy. However, the option should always re-

main to restore full accuracy (i.e. no optimization) for batch or less interactive

experiments. Finally, the environment should be complete in its coverage of the

known biological components of morphogenesis. That is, it should cover all

three areas of developmental mechanisms and all six cellular processes listed in

Section 1.

These are the primary requirement that we will strive to satisfy in this

thesis. Another important concern will be the usability of our research tool. We

will make every effort to construct a user interface that biologists will find easy

to use, although the primary focus will be on the underlying simulation engine.

3.2 Relationship to Other’s Work

Many models of cellular development have been put forward in the

past (a review can be found in [19]). Our work is most closely related to the

Lindenmayer (L) family of models which we will briefly summarize here.

L-systems (short for Lindenmayer systems) were put forward by Aris-

tid Lindenmayer in 1968 [21] as a modelling framework for plants. An L-system

is closely related to the concept of a Chomsky grammar in the sense that it suc-

cessively rewrites a string of symbols using rules specified in a grammar. How-

ever, unlike Chomsky grammars, each derivation step in an L-system occurs in

parallel for each symbol in the string and there is no distinction between termi-

nal and non-terminal symbols. In an L-system biological model, the symbols

represent a component of the organism being modelled such as a cell, a branch

or a leaf. The association of a biological concept to a symbol, however, is strictly
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in the modeller’s mind and the graphical representation of the symbols is speci-

fied through LOGO-style turtle directives embedded within the L-system gram-

mar rules [26]. L-systems have been used extensively to model branching struc-

tures and non-branching filaments [27].

L-systems evolved into a whole family of models that includes brack-

eted L-systems [21], map L-systems (cyclic and marker-based forms) [4, 13,

23, 25], cellwork L-systems (3-dimensional map L-systems) [12] and cell sys-

tems [2, 9, 20]. Map L-systems made possible the modelling of cell layers by

using the graph theoretical concept of maps. Each region, bounded by a group

of edges (walls), corresponds to a cell and the rules of the map L-system either

operate on walls (marker-based) or regions (cyclic) to bring the map to each

subsequent configuration. Cells are brought to their optimal shape through a

physically-based cell shape controller which takes into account cell turgor pres-

sure, wall tension and outside forces (other cells, environment, etc.) [14]. Cell

systems added a layer of abstraction to map L-systems by having rules oper-

ate on cells rather than walls. The physically-based controller introduced with

map L-systems has also been successfully applied to cell systems. Appendices B

through D contain examples of an L-system, map L-system and cell system re-

spectively.

In 1995, we introduced extended context-sensitive cell systems [20]

which improved on cell systems by permitting the manipulation of individual

cell parameters such as pressure and wall tension. This allows the design of

more accurate models by providing finer control of cell shape. Later, we com-

bined the structure of the Cell Programming Language (CPL) [1] with the syn-

tactic features of cell systems to create a more structured syntactic language for

cell systems [19]. We named this language “Cell Systems Programming Lan-

guage” (CSPL). Among its many useful features, the language allows the defi-

nition of cell types in a structured way by grouping cell characteristics and be-

haviour, and provides commands that map semantically to biological processes

such as cell division and chemical diffusion. It is worth mentioning however,

that as the level of biological abstraction gets higher, the modeller has less con-

trol over the emergent behaviour of the model. This is always an issue when
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moving from low-level languages to higher-level ones (e.g. consider the move

from assembly to C to 4th Generations Languages (4GL)). In programming lan-

guages, one loses the ability to explicitly dictate and optimize code but gains

freedom in expressing high-level logical constructs. A high-level biological sim-

ulation language such as CSPL, denies the modeller individual control over all

aspects of a cell, but permits the expression of well-known processes such as

chemical diffusion without worrying about the details of such a process. How-

ever, just as a programmer must trust that a compiler is correct in its translation

of a computer program, so must the modeller believe that correct behaviour can

be attained through a combination of high-level process and the manipulation

of cell parameters.

The multiple-mechanism developmental model developed by Fleis-

cher [7] is similar to our proposed environment in its intent to provide a com-

prehensive development environment. However we differ significantly in the

cellular representation and medium. The cells in the Fleisher model are disks

and spheres which do not vary in shape (only size) and move around freely in

a viscous medium. Though the cells can touch and bind through wall binding

sites, the shape changes inherent in such interactions are not modelled. Also in

contrast to our system, all cell behaviours are specified through partial differen-

tial equations and not higher level language constructs as in CSPL.

The power of our proposed environment lies in the syntactic nature

of the model specification language (CSPL), in its reference to cells as entities

and in its use of the physically-based cell shape controller to model cell layer

dynamics. Together these features allow for easier model construction, more

realistic simulations, and more direct biological inferences. Appendices E and F

show two examples of models constructed with CSPL. One thing to notice here

is that even though the CSPL model of A. Catenula (Appendix E) uses the same

division rules as the corresponding L-system (Appendix B, it produces a more

realistic result because of the cell shape controller. Also, using the CSPL model,

it would be possible to model the cell division ratio using reaction-diffusion pro-

cesses inside the cells as suggested in [17] (though it would require the addition

of an underlying diffusion grid). It is not clear how one could achieve this with



6
the L-system model of A. Catenula. Although reaction-diffusion theory has been

integrated into L-systems by means of interactions between components [27] or

between components and their environment (medium) [24, 28], it is not possi-

ble to model concentration gradients within a single component of an L-system,

simply because the components do not have a shape which can be referenced

during the execution of the model.

The models that we have studied (see Table 1) fall into the two cate-

gories previously described in [19]: analytical and synthetic. Analytical models

strive to prove that a particular developmental feature can be explained by a set

of cellular processes. These models are usually limited in the scope of cellular

processes they model and tend to be inflexible. Synthetic models are designed

without a particular organism or developmental feature in mind. They strive

to encompass as many cellular processes as have been described in the litera-

ture in order to model a wide range of developmental features. The models

described in [1, 5, 6, 8, 21, 23] are in this category but differ in the range of pro-

cesses they model and the way in which these are implemented. Because cell

shape changes can significantly affect the overall structure of the organism - by

influencing division patterns for example - it is important to model the shape of

a cell with some accuracy. Conversely, the structure of the organism can affect

cell shape through mechanical means. For example, the number and sizes of a

cell’s neighbours will affect the shape that it ultimately takes. Cellular represen-

tation plays a large role in determining whether a model will be able to model

the cell shape-structure interactions accurately. For example, even though the

topological model [5] is able to model all the cellular processes, the cell shape

changes are a consequence of cell neighbourhood changes and do not reflect

mechanical interactions between cells. That is, even though it models well the

impact of shape on structure, it does not do the converse. Both are important in

a realistic model of cellular structure and processes. Our choice of polygons and

beta-splines to model 2-dimensional cells and the use of a physically-based cell

shape controller ensures that the cell shape-structure interactions are modelled

accurately.
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Cell Rep. (L)ayers,
(T)issues,
(B)ranch
**

Division Diff. Shape
Variable

Growth Death Migration Other

L-systems lines, curves, B • • • • •
1968 [21] surfaces
Map-L systems polygons, β-splines L, B • • •* •
1979 [4, 13, 23, 25]
Cell Systems polygons,β-splines L • • •* • •
1991 [2, 9, 20]
Protrusion-contraction polygons L •* • • •
1990 [32]
Free cells Free Dirichlet L • • • •
1993 [16]
Topol. model topological L • • • • • • •
1984 [5, 29]
Cellworks polyhedrons, L,T • •* •
1984 [12, 22] spheres, ellipsoids
FEM finite elements L,T •* •
1994 [3]
Multi-mechanism disks,spheres L,T • • • • • •
1992 [6]
CPL points L • • • • • • •
1995 [1]
Polarization-Elasticity points L • • •
1995 [30]

* Uses physically-based shape controller
** A tissue refers to a 3-dimensional group of cells. A layer is a cross-section of a tissue.

Table 1: Summary of developmental models. The column labeled “Other” includes processes such as collision detection and cell adhesion
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4 Research Plan

4.1 Approach

We propose to develop a software environment which satisfies all the

requirements outlined in Section 3.1. The environment will consist of four main

components:

• a language,

• a simulation engine,

• an editor to construct simulations, and

• a interface to control simulation parameters an to display results.

The simulation language will be based on Cell Systems [2, 9] and CPL

(Cell Programming Language) [1], and will incorporate features to allow cell

division, cell growth, cell branching, chemical diffusion between cells and their

environment, and environmental parameters such as gravity, temperature and

lighting level/direction. Work on this language which we have called CSPL

is already underway; the current specification of the language can be found

in Appendix A. Specifically, we want to add a branching command, a migra-

tion command, an underlying diffusible medium, collision detection, and pro-

grammable environmental parameters such as light, gravity and temperature.

By programmable, we mean that the modeller will be able to control these pa-

rameters just as they would a cell (i.e. the environmental parameters will have

behaviour).

The simulation engine is the means by which we perform the com-

mands included in the language. It encompasses the cellular representation,

the language parser, the command interpretor, the cell shape controller, and the

simulation director. Some of the issues regarding the simulation engine have

already been decided, such as our choice of the cellular representation and of a

physically-based cell shape controller. However a lot of work still needs to be

done in optimizing the cell shape controller and extending it to include envi-

ronmental factors and collision detection between cells. The optimization of the
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cell shape controller is especially important to the interactive nature of the soft-

ware. Currently, as the number of cells increase (and cell multiplication is often

exponential), the time in reaching structural equilibrium increases significantly

because we must iteratively calculate forces acting on every vertex within the

structure. We are hoping to decrease the number of steps to equilibrium by lim-

iting the sphere of influence of a cell. For example, if a cell changes shape on

the one side of the structure, it should have little impact on the opposite side.

We envisage that this improvement will result in a performance gain especially

when dealing with structures exhibiting apical growth (growth mainly from the

tip (apical cells) of the structure) which is common in plants. We are also inves-

tigating a top-down approach to structure dynamics by recursively calculating

dynamics on groups of cells. This may decrease the number of iterations that

we need to perform over the entire structure to reach equilibrium.

The simulation editor will be a graphical user interface to help in

defining cell types and their respective behaviour, specifying the starting cell

configuration and setting default parameters for the simulation (see Figure 1

for screen shot).

The simulation viewer is the main window which displays the start-

ing cell configuration and the animation of the developing structure. A number

of control panels which are part of the viewer, allow dynamic manipulation of

simulation parameters such as individual cell pressure and wall tension, param-

eters of the physically-based cell shape controller, simulation step size, etc. (see

Figure 2 for screen shot).

4.2 Artifacts to be Produced

Two artifacts will be produced:

• the software environment, and

• a complete model of Physcomitrella Patens

As a demonstration of the features of the software environment, a

realistic model of the development of the moss Physcomitrella Patens will be con-

structed using our software and the help of a biologist, Dr. Neil Ashton from
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Figure 1: Screen shot of simulation editor

Figure 2: Screen shot of simulation viewer
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the University of Regina. A good description of the development of P. Patens

appeared in [11]:

Generally speaking, the development of P. Patens under defined

standard culture conditions begins with a spore which germinates to

produce filaments of green chloronemal cells which grow by apical

divisions approximately 20 hours. Subapical cells produce branches

which form new apical cells. After roughly six days some chlorone-

mal apical cells divide to produce caulonemal apical cells. These

caulonemal apical cells divide much faster (approx. every five hours)

giving rise to reddish caulonemal filaments, most of which exhibit

clockwise curvature. Most subapical caulonemal cells divide to form

side branch initials. Between 85 to 95% of these branches give rise to

secondary chloronemata, 5 to 6% become secondary caulonemata,

and the remaining either do not develop further or produce a bud.

These buds develop into gametophores (leafy shoots). Much of the

development remains relatively planar, with the exception of the

leafy shoots which grow upwards.

A model of this organism has already been developed using L-systems [10] with

good results but the investigation of some aspects of the moss development

such as the space-filling of chloronemal cells and the effects of gravity, light and

chemicals requires a more powerful cell-based simulation tool.

4.3 Limitations of the Dissertation

Because our primary aim is to develop a biologically complete simu-

lation environment, we will not be producing a full-blown user interface study

of our software. However, we believe that, through working with a biologist in

the development of the Physcomitrella Patens model, we will gain valuable in-

sights into the usability of the tool. Undoubtedly, some changes will be made to

the interface through this inter-disciplinary cooperation and even though such

a study is not inclusive, it will be very beneficial in making our software more

usable.
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Our model uses 2-dimensional cells, and while this is not a limita-

tion when dealing with low-level plant development and cell layers, it would

be useful to extend the model to use 3-dimensional cells to enable the study of

higher plants and animals. In particular this would be necessary for the mod-

elling of the leafy shoots of P. Patens. However, 3-D cells would require a signif-

icantly different mechanism for the specification of the cell division plane and

3-D structures would need much more computational power to reach equilib-

rium.

5 Research Papers

• A complete software environment for the investigation of developmental

processes

• A computer simulation of the development of Physcomitrella Patens

• The Cell System Programming Language (CSPL) - a simulation language

suited to biological investigation

6 Contributions

6.1 Computing Science

At my depth exam, one of the examiners astutely asked the question:

“Why is this computing science?”. To answer this question we must first an-

swer: “What is computing science?”. Computing science like any other field has

two components: theoretical and applied. The theoretical component is closely

related to mathematics and deals with issues of pure computation and optimiza-

tion. The applied component in its most traditional sense deals with the devel-

opment of general algorithms for the computer such as those used in communi-

cation protocols, operating systems and database management. As computers

spread rapidly into other fields however, the applied component broadened to

include algorithms and methods developed for specific applications (e.g. web

protocols and visualization methods). This branch of computing science uses

the most recent advances in the field to push the boundaries of the computer as
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a research and productivity tool. This is where we feel our contribution is most

significant.

On a more traditional level, we have also contributed a tool that can

be used to study the behaviour of irregular cellular automatas. The use of a

language to easily define state changes under variable and programmable con-

ditions will be a powerful addition to the investigation of processes occurring

on irregular grids such as pattern formation.

6.2 Biology

Our contribution to biology is in the production of a tool for the study

of biological development processes which can also be used as a basis for the

development of more advanced modelling tools. It is our hope that this tool will

help in furthering the understanding of morphogenesis in plants and embryos.

We will also contribute a complete model of P. Patens which we hope

will lead some new insights into the development of lower plants.

7 Dissertation Schedule

branching

Modelling of P. Patens

Other language additions

Optimization of dyamics

Interface

Thesis writing & defense

Nov      Dec      Jan      Feb      Mar      Apr      Jun      Jul      Aug      Sep      Oct      Nov
1997 1998

Figure 3: Completion timeline
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A CSPL Language Specifications

simulation : [sim attributes] celltypes environment observer cells

sim attributes : sim attribute [sim attributes]

sim attribute : field t

| regular

| time

| threshold

| tension

| step

| merging

| dynam

field t : field type = field type

field type : one of

NUPOLARITY UPOLARITY Vector

regular : regularization = on off

on off : one of

On Off

time : time step = real

threshold : dynamics threshold = real

tension : outside wall tension = tension opt

tension opt : one of

NORMAL HALF
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step : step size = integer

merging : vertex merging = on off

dynam : dynamics = on off

celltypes : celltype [celltypes]

celltype : type typename [: like typename] {

[colour = colour]

[declarations]

behaviour

}

type name : one of

environment observer identifier

colour : identifier (X colour name)

| (integer, integer, integer) (RGB colour)

declarations : declaration [declarations]

declaration : datatype identifier

| biochemical identifier = [expression, colour] [expression, colour]

datatype : one of

real int bool

behaviour : states

| commands
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states : state [states]

state : state identifier [virtual ] {

commands

}

environment : environment {

var inits

}

observer : observer {

var inits

}

var inits : var init [var inits]

var init : identifier = expression

cell : cell {

type identifier;

cell inits

location = { coordinates }

}

cell inits : lcell variable = expression [cell inits]

coordinates : coordinate coordinate coordinate

| coordinate [coordinates]

coordinate : ’[’ expression, expression, expression ’]’ [= identifier]

commands : command [commands]
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command : divide

| assignment

| diffuse

| if then

| for loop

| differentiate

| goto

| write

| echo

| die;

| image;

divide : divide [expression%] at (expression, expression) into

daughtercell daughtercell

daughtercell : identifier {

[cellvar assignments]

}

cellvar assignments : cellvar assignment [cellvar assignments]

cellvar assignment : lcell variable assign operator expression

lcell variable : pressure

| identifier

| neighbour (expression).lcell variable

| wall (expression).wall variable

wall variable : one of

tension permeable
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assign operator : one of

= += -= *= /= ++ --

assignment : cellvar assignment

| simvar assignment

simvar assignment : lsim variable assign operatrs expression

lsim variable : one of

time interval steps

diffuse : diffuse identifier {

rate = expression

production = expression

}

if then : if expression 1orbcommands [else 1orbcommands]

1orbcommands : command

| { commands }

for loop : for identifier expression to expression 1orbcommands

differentiate : differentiate daughter def

go to : goto identifier

write : write expression

echo : echo quoted string



20
expression : integer

| real

| True

| False

| variable

| ( expression )

| - expression

| ! expression

| expression operator expression

| atan2 (expression, expression)

| unaryfunc (expression)

operator : one of

+ - * / =̂= != <= >= < > && ||

unaryfunc : one of

sin cos tan ceil floor asin acos

atan exp log log10 sqrt

variable : cell variable

| sim variable

cell variable : identifier

| age

| area

| num neighbours

| pressure

| neighbour (expression).cell variable

| wall (expression).wall variable

sim variable : one of

time time interval steps
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B Parametric context-sensitive L-system of A. Catenula

#define CH 900 /* high concentration */

#define CT 0.4 /* concentration threshold */

#define ST 3.9 /* segment size threshold */

#ignore f ˜ H

ω : -(90)F(0,0,CH)F(4,1,CH)F(0,0,CH)

p1 : F(s,t,c) : t=1 & s >= 6 −→ F(s/3*2,2,c)f(1)F(s/3,1,c)

p2 : F(s,t,c) : t=2 & s >= 6 −→ F(s/3,2,c)f(1)F(s/3*2,1,c)

p3 : F(h,i,k) < F(s,t,c) > F(o,p,r) : s>ST | c>CT −→

(s+.1,t,c+0.25*(k+r-3*c))

p4 : F(h,i,k) < F(s,t,c) > F(o,p,r) : !(s>ST|c>CT) −→

F(0,0,CH) H(1)

p5 : H(s) : s < 3 −→ H(s*1.1)

**F cells are drawn as rectangles and H cells as circles.

Figure 4: Simulation of the development of Anabaena Catenula
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C Map L-system of Microsorium Linguaeforme

r1 :
→
A−→

←
a [−

←
B]
→
I r2 :

→
B−→

→
E [+

→
b ]x[−

→
H]

→
D

r3 :
→
D−→ [−

→
M ]

→
F r4 :

→
F−→

→
G [+

←
H]x[−

→
H]

→
D

r5 :
→
H−→ x[+

→
F ]x r6 :

→
I−→

→
C

r7 :
→
C−→

→
I [−

←
F ]
→
I r8 :

→
E−→ x[−x]x

r9 :
→
G−→ x[+x]x[−x]x r10 :

→
J−→

→
L

r11 :
→
K−→

→
N r12 :

→
L−→ x[+

←
M ]x

r13 :
→
M−→ x[+

→
L]x r14 :

→
N−→

→
O

r15 :
→
O−→ x[+

←
L]
→
N

            

Figure 5: Simulated development of Microsorium Linguaeforme
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D Cell System Model of Microsorium Linguaeforme

#types

ONE()

TWO()

THREE()

C()

D()

E()

F()

G()

L()

R()

X()

#axioms

F()@[300,100,0],[200,0,0],[200,-70,0],[200,-100,0],[300,-100,0]

L()@[100,100,0],[200,0,0],[300,100,0]

C()@[100,-70,0],[200,-70,0],[200,0,0],[100,100,0]

X()@[200,-70,0],[100,-70,0],[100,-200,0],[200,-200,0],[200,-100,0]

X()@[300,-100,0],[200,-100,0],[200,-200,0],[300,-200,0]

X()@[100,-200,0],[100,-300,0],[300,-300,0],[300,-200,0],[200,-200,0]

X()@[100,-300,0],[100,-400,0],[300,-400,0],[300,-300,0]

X()@[100,-400,0],[100,-500,0],[300,-500,0],[300,-400,0]

#rules

L-->R()ˆ(-45,.3)ONE()

R-->ONE()ˆ(45,.7)L()

ONE-->TWO()ˆ(-98,.5)THREE()

TWO-->ONE()ˆ(90,.5)ONE()

THREE-->X()ˆ(0,.5)X()

C-->D()
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D-->E()ˆ(-90,.5)X()

E-->X()ˆ(90,.5)D()

F-->G()ˆ(-90,.5)X()

G-->F()ˆ(90,.5)X()

X-->X()

#end
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E CSPL model of A. Catenula

type environment {

biochemical nitrogen = [0, yellow] [10, RED]

}

type H {

state growing {

wall(2).tension *= .7;

wall(4).tension *= .7;

if (age == 2)

goto static;

}

state static {}

}

type anacell {

real size;

state growing {

size += .1;

diffuse nitrogen {

rate = .25;

production = -.75;

}

wall(1).tension -= .5/20;

wall(3).tension -= .5/20;

if (size >= 6) goto mature;

if (nitrogen < .7 && size < 4) goto starved;

}

state mature : virtual {}

state starved {

differentiate_to H { nitrogen = 900; }

}
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}

type L : like anacell {

state mature {

diffuse nitrogen {

rate = .25;

production = -.75;

}

divide at (0, .67) into {

R {

size *= 2.0/3;

wall(1).tension = 1;

wall(3).tension = 1;

}

L {

wall(1).tension = 2;

wall(3).tension = 2;

size *= 1.0/3;

}

}

goto growing;

}

}

type R : like anacell {

state mature {

diffuse nitrogen {

rate = .25;

production = -.75;

}

divide at (0, .67) into {

L {

size *= 2.0/3;

wall(1).tension = 1;
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wall(3).tension = 1;

}

R {

size *= 1.0/3;

wall(1).tension = 2;

wall(3).tension = 2;

}

}

goto growing;

}

}

environment {

nitrogen = 900;

}

cell {

type R;

size = 4;

nitrogen = 3;

wall(2).permeable = True;

wall(1).tension = 1;

wall(3).tension = 1;

wall(4).permeable = True;

location = {

[-50, 50, 0][-50, -50, 0][50, -50, 0][50, 50, 0]

}

}
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Figure 6: Simulated development of A. Catenula
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F CSPL model of Microsorium Linguaeforme

field_type = NU_POLARITY;

type A {

colour = pink;

int side;

divide at (side*45, .3) into {

A { side = -side; }

S1{}

}

}

type S1 {

int side;

divide at (side*98, .5) into {

S2{ side = -side; }

S3{}

}

}

type S2 {

int side;

divide at (side*90, .5) into {

S1{ side = -side; }

S1{}

}

}

type S3 {

pressure *= 1.5;

divide at (0, .5) into {

T{}

T{}

}

}
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type B {

int side;

int delay;

if (delay == 0) {

divide at (side*90, .5) into {

B { side = -side; }

T {}

}

}

else

delay--;

}

type T {

state vegetate{}

}

cell {

type B;

delay = 0;

side = 1;

location = {

[200,-100,0][300,-100,0][300,100,0][200,0,0][200,-70,0]

}

}

cell {

type A;

side = -1;

location = {

[100,100,0][200,0,0][300,100,0]

}

}
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cell {

type B;

delay = 1;

side = -1;

location = {

[100,-70,0][200,-70,0][200,0,0][100,100,0]

}

}

cell {

type T;

location = {

[200,-70,0][100,-70,0][100,-200,0][200,-200,0][200,-100,0]

}

}

cell {

type T;

location = {

[300,-100,0][200,-100,0][200,-200,0][300,-200,0]

}

}

cell {

type T;

location = {

[100,-200,0][100,-300,0][300,-300,0][300,-200,0][200,-200,0]

}

}

cell {

type T;

location = {

[100,-300,0][100,-400,0][300,-400,0][300,-300,0]

}

}
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cell {

type T;

location = {

[100,-400,0][100,-500,0][300,-500,0][300,-400,0]

}

}
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