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Abstract:  Applications in molecular biology more and more require geometric data man-
agement along with physicochemical data handling. Thus, 3D structures and surfaces of
molecules become basic objects in molecular databases. We propose the neighborhood
query on graphs such as molecular surfaces as a fundamental query class concerning to-
pological information on patch adjacency. Furthermore, we suggest a patch-based data
structure, called theTriEdge structure, first, to efficiently support neighborhood query
processing, and second, to save space in comparison to common 2D subdivision data
structures such as the quad-edge structure or the doubly-connected edge list. In analogy
to the quad-edge structure, the TriEdge structure has an algebraic interface and is imple-
mented via complex pointers. However, we achieve a reduction of the space requirement
by a factor of four. Finally, we investigate the time performance of our prototype which
is based on an object-oriented database management system.

Keywords: 3D molecular modeling, graphs in spatial databases, surface representation,
neighborhood query, surface approximation, database systems in molecular biology.

1 Introduction

The fundamental 3D objects in molecular biology and computational biochemistry are
large molecules with several hundreds to thousands of atoms. There are various appli-
cations that require access to the 3D structure of the molecules, as it is provided for pro-
teins by the Brookhaven Protein Data Bank (PDB) [Ber 77]. Up to now, the PDB con-
tains 3,000 proteins, enzymes, and viruses [PDB 95]. For each entry, along with infor-
mation on the chemical structure of the protein, the 3D coordinates of its atoms are
stored in a text file.

In the last years, a new topic has been emerging in the area of protein engineering:
the prediction of molecular interaction, called thedocking problem. Several methods
has been suggested to meet the one-to-one docking problem [Con 86], [BMH 92],
[FNNW 93], [HT 94]: which constellation of two given proteins represents a stable
complex? A constellation is the relative position of a molecule with respect to its dock-
ing partner, and may be described by six parameters: three coordinates for translation in
3D space, and three Euler angles for rotation (cf. figure 1). Since all of these six degrees
of freedom to compose two molecules together in 3D space are continuous, the constel-
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lation space is infinite. Common discretizations of protein surfaces result in thousands
of points, and each of them can represent a possible docking site.

In our project “BIOWEPRO: a Database System for Protein Docking”, we are faced
with the one-to-many docking problem: select such proteins from the PDB that are able
to form a stable complex in interaction with a given query protein, and determine appro-
priate constellation parameters. When considering the number of proteins in the data-
base (3·103) and the number of possible docking sites on a protein in the database
(> 103) and on the query protein (> 103), the search space at least has an overall size of
billions of protein-protein-constellations [EKSX 95].

Thus, docking retrieval is a new and challenging application for spatial database sys-
tems. Due to the enormous size of the search space, a multi-step query processing archi-
tecture is recommended. In spatial database systems, this paradigm efficiently supports
the processing of point and region queries as well as spatial joins [BHKS 93], [KSB 93],
[BKSS 94]. Additionally, we perform various steps of preprocessing: first, we deter-
mine various geometric and physicochemical features of the molecular surface, e.g.
local shape index values [Koe 90]. From these, we build up a feature index [Ald 94] to
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Fig. 1.Example complex: beta trypsin with trypsin inhibitor (PDB code 2PTC)



improve the filter step. Second, we apply a segmentation method to diminish the con-
stellation space [EKX 95].

The main object of interest in protein docking is the 3D molecular surface, rather
than the 3D arrangement of the atoms a molecule consists of. Moreover, thelocal shape
of the surface at a possible docking site is the fundamental geometric criterion for dock-
ing retrieval, rather than the location of a docking site in space. This is analogous to sim-
ilarity retrieval in CAD databases [SKSH 89]. Since the interaction of molecules is
restricted to the docking sites, we do not require a description of the global shape (out-
line, contour) of molecules. An access method for molecular surfaces has to support a
representation of possible docking sites that is independent from location and direction
in space, i.e. invariant with respect to translation and rotation. Along with the geometry,
also physicochemical properties determine molecular interactions and, therefore, have
to be considered when representing molecular surfaces.

In section 3, we will see that molecular surfaces are smooth but quite bumpy
(uneven). Since all of the bumps have similar atomic size, the selectivity of a local shape
index would be very low when based on infinitesimal neighborhoods. Instead, for each
surface primitive (patch or point, resp.), we collect its neighbors within an appropriate
radius, and determine the local shape via a paraboloid as a simple approximation. The
basic retrieval operation is theneighborhood query: select a connected set of patches (or
points) around a given patch (or point, resp.) bound by a neighborhood condition, e.g. a
distance or similarity criterion.

Another application of the neighborhood query is the segmentation of protein sur-
faces: adjacent surface elements will be grouped to segments as long as they are similar.
We will change our notion of docking site from the surface elements mentioned above
to these segments. Due to the resulting homogeneity within the segments, we expect a
high effectivity for the docking retrieval, and due to the reduction of the number of dock-
ing sites, we expect an improved efficiency. For segmentation, a region growing method
is performed: we select elements that are interesting in some sense and, for each of them,
we perform a neighborhood query controlled by an appropriate similarity criterion.

Neighborhood query processing requires access to adjacency information, as it is
provided by common data structures like the quad-edge structure [GS 85], or the DCEL
[PS 85]. In this paper, we propose a new basic technique to store molecular surfaces,
reducing the storage requirement by a factor of four. Since our method is based on topol-
ogy, it supports effective and efficient processing of queries on the molecular surface
structure. We formally introduce the general neighborhood query, and give an algorithm
to process it. Two applications are considered in detail: local surface approximation and
surface segmentation. We implemented our method in C++ on top of the object-oriented
database management system ObjectStore [OHMS 92].

The paper is organized as follows: in section 2, we refer to related work, and in
section 3, we review a common subdivision of molecular surfaces and give a specifica-
tion to represent their topological structure. In section 4, we formally define the neigh-
borhood query and show its application to surface approximation and segmentation. In
section 5, the TriEdge data structure is presented that supports efficient processing of
neighborhood queries. Section 6 contains first evaluation results, and section 7 con-
cludes the paper with a summary and an outlook to future work.



2 Related Work

As we will illustrate in section 3, molecular surfaces are 2-manifolds that can be repre-
sented by a common subdivision. Therefore, we investigate the literature for any hints
how to efficiently store 2D subdivisions in database systems. The articles describing
molecular surface calculation as found in molecular biology [Con 83], computer graph-
ics [VBW 94], and computational geometry [HO 94] do not mention their surface rep-
resentation method. In [HO 94] only, there is a hint that extended van-der-Waals sur-
faces are stored with the quad-edge structure. More investigations of surface graph struc-
tures and retrieval are found in the area of solid modeling, graphs in spatial databases,
and graph algorithms for recursive query processing.

In the field of solid modeling, the quad-edge structure is a quite common storage
method for 2D subdivisions [GS 85]. As a short review to the concepts behind the quad-
edge structure, we cite from [GS 85], page 80, while carefully adapting the notation to
the style as required in our implementation environment: “For any oriented and directed
edgee we can define unambiguously its vertex oforigin, e.Orig(), its destination,
e.Dest(), its left face, e.Left(), and itsright face, e.Right(). We define also theflipped
versione.Flip() of an edgee as being the same unoriented edge taken withopposite ori-
entation and same direction, as well as thesymmetric of e, e.Sym(), as being the same
undirected edge with theopposite direction but the same orientation ase.” On page 81,
the basic traversal functions are introduced: “We can define thenext edge with same ori-
gin, e.LEdge(), as the one immediately followinge (counterclockwise) in this ring. Sim-
ilarly, given an edgee we define thenext counterclockwise edge with same left face,
denoted bye.Lnext(), as being the first edge we encounter aftere when moving along
the boundary of the faceF = e.Left()in the counterclockwise sense as determined by the
orientation ofF. The edgee.Lnext() is oriented and directed so thate.Lnext().Left() = F
(including orientation).”

The quad-edge structure is implemented by records representing four views to a sin-
gle undirected edge, or two directed half-edges, respectively. Each edge record contains
four pointersData, two of them to the adjacent vertices, providing the access required
for the evaluation ofOrig() andDest(), and the remaining two to the adjacent faces
Left() andRight(). The traversal functionsSym(), LEdge(), Lnext() etc. are supported by
four complex pointers (e,r) from an edge record to the edges following in clockwise and
counterclockwise direction around the corresponding verticesOrig() andDest() (cf.
figure 2). This way, a cycle (e,r).Sym().Sym()= (e,r) is stored as a whole in one record:
the evaluation of (e,r).Sym() does not require dereferencing the pointer r, but only
changing the ‘view’ component r, whereas the other operations likeLEdge() require
dereferencing t. In the TriEdge structure,LEdge() cycles are clustered rather than all of
theSym() cycles (cf. section 5).

Since molecular surfaces are 2-manifolds, we do not require generalizations as for
the modeling of (non-planar) 3D subdivisions [DL 89] or of subdivided d-manifolds for
arbitrary dimensions d [Bri 93]. Molecular surfaces are orientable, therefore we drop the
Flip() operation. For reasons of static typing, we want to distinguish explicitly between
the surface graph and its dual graph, and thus, do not provide the operationRot() which
serves for changing the view to the dual of the graph, exchanging vertices with faces.
Whereas supportingFlip() would cost a few bits per edge record,Rot() would be for free.



The quad-edge implementation is similar to the doubly-connected-edge-list (DCEL)
from [PS 85], with two differences: first, the quad-edge structure is defined in terms of
an edge algebra, leading to a more comfortable interface to edges, their symmetric and
dual edges, in comparison to the DCEL. Second, the complex pointers of the quad-edge
structure contain a simple pointer to an adjacent edge record, and additionally, unlike a
DCEL entry, an offset value representing the view to the referenced edge. Exactly this
idea of an algebraic interface together with a complex pointer concept is used for our
TriEdge structure as described below. This approach is well supported by the object-
oriented data model and leads to an easy integration.

In [DMP 93], a unified topological model called Plane Euclidean Graph (PEG) is
proposed to integrate the various domains of information a spatial database system is
concerned with. Spatial queries are classified into topological, set-theoretic, and metric
queries. Our neighborhood query obviously qualifies for the topological class, but also
for the metric or a thematic one, dependent on the neighborhood criterion specified. As
a data structure for the PEG, a modification of the DCEL is proposed that additionally
can hold isolated points as well as isolated edge components inside faces.

Questions concerning graphs in spatial databases also are investigated in [EG 94].
The graphs consist of nodes, edges, and explicit paths, and are used to represent net-
works. The examples are taken from the domain of geographical information systems
with highways, roads, and rivers, etc. as instances of explicit paths. A typeREG is men-
tioned occurring as parameter for operationsinside  andintersection , but the
concept of faces that are defined inherently by edge cycles is not considered explicitly.
In our application domain, we require these faces e.g. for visualizing molecular sur-
faces. The faces represent the patches of a molecular surface, and provide access to the
underlying solid which is an atom sphere, a probe sphere, or a torus. The edge cycles
bounding the faces represent the bordering arcs that form the trimming curves when ren-
dering the patches. The dual view of the graph — considering the patches to be vertices
instead of faces — helps when traversing the surface graphs.
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Fig. 2.An LEdge ring and the corresponding linked quad-edge records (cf. [GS 85])
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As an interesting contribution in [EG 94], the selection of a subgraph around a node
is provided by the operation circle: graphi × nodei × numj × (edgei → numj) → graphi.
The circle function is specified by parameters for the graph, center, and radius along
with an edge cost function, and is processed performing Dijkstra’s single-source short-
est path algorithm. The specification of our conditional neighborhood is very similar to
this concept. As an extension, we do not restrict it to the case of a radius bounding the
path length, but support general conditions as relations between an arbitrary node and
the center of the neighborhood. Additionally, the neighborhood query also supports
symbolic similarity criteria and is not restricted to numerical distance comparisons.

Our system is based on an object-oriented data model. In [Jia 92] and [Jia 94], graph
structures in relational databases are considered for the purpose of effective expression
and efficient processing of recursive queries. For instance, SQL is extended by path
expressions for the specification of transitive closures of relations. The graph structure of
recursive relations is exploited to perform efficient query processing via graph algo-
rithms. In consideration of a paging environment, algorithms for efficient graph traversal
are analyzed. As a result, breadth-first traversal algorithms appear to be preferable.

3 Molecular Surfaces

In molecular biology, the surface of a molecule is defined to be the solvent accessible
surface for any solvent probe radiusα [Ric 77]. This surface is equivalent to the bound-
ary of the weighted 3Dα-hull: for α > 0, theα-hull of a set s of spheres is the comple-
ment of the union of all open spheres of radiusα intersecting no sphere of s [VBW 94].
Forα = 0, theα-hull is equal to the union of all spheres of s, and forα → ∞, theα-hull
of s coincides with the convex hull of s. Various implementations for the calculation of
molecular surfaces are published [Con 83], [VBW 94], [Sch 94], [HO 94].

Molecular surfaces have a strong regularity, and there are three types of patches they
consist of: convex spherical patches, saddle-shaped rectangles, and concave spherical tri-
angles (cf. figure 3). These types depend on the number of atoms that the probe sphere is
in simultaneous contact with when rolling over the molecule. Since the algorithms enforce
the atoms to be in general position, ensuring the probe sphere never being in simultaneous
contact with more than three atoms, the complexity of the algorithms is reduced drasti-
cally. Obviously, this also holds for the representation of molecular surfaces.

At first sight, such patch-based representations of molecular surfaces seem to be dif-
ficult to manage: there are different types of patches with a different number of vertices,
etc. Thus, triangulated surface representations are quite common to be used for docking
purposes, and also for visualization. However, there are strong advantages for the patch-
based representation: first, for a particular molecule and a given probe radiusα, the sol-
vent accessible surface is well defined in its structure and its shape. Second, for any
given point density, the patchwork can be refined to a dotted surface, but not vice versa.
Third, every patch is homogeneous with respect to the curvature, and the normal vector
of a surface point is determined by the geometric parameters of the patch it lays on, i.e.
via the associated atom sphere, torus, or probe sphere, respectively. Overall, we prefer
a patch-based surface representation rather than a point-based method or an arbitrary
triangulation.



In the following, we present a patch-based representation for molecular surfaces,
providing access to the patches via an edge algebra. Guibas and Stolfi introduced such
an algebra for 2D subdivisions as a specification for their quad-edge structure [GS 85].
Since the quad-edge structure is general enough to store 2D subdivisions which are
embedded in 3D space, it is an appropriate storage structure for subdivisions of molec-
ular surfaces as described above: let the faces stand for the surface patches, the edges
for the arcs bordering each patch, and the vertices for the corner points of the patches.
This view is adequate e.g. for visualization purposes, since the patches provide access
to the underlying solid being an atom sphere, a probe sphere, or a torus. The edge cycles
bounding the faces represent the bordering arcs that form the trimming curves required
for rendering the patches. The dual view to this surface graph is intuitive for traversal
purposes: consider the patches to be the vertices of the graph, the edges remain being
associated to the arcs, and the faces represent the corner points (cf. table 1).

As an interface for our surface representation, we specify required edge functions as
follows. An illustration of the operations is given in figure 4. We implement this speci-
fication as a C++ module for the object-oriented database system ObjectStore. How-

molecular surface 2D subdivision ditto, dual view

corner point vertex face

patch border arc edge edge

surface patch face vertex

Tab. 1.Components of molecular surfaces, mapped to components of a 2D subdivision

Fig. 3.Surface of a portion of hemoglobin [Con 83].



ever, to demonstrate the relationships between the functions, we give an algebraic spec-
ification with axioms. From theEDGE→ EDGE functions,Sym andLEdge  orSym and
Lnext  are primitive, the others are derived with respect to the axioms:

In addition to the algebra, we define an iteration statement to assign all the edges e
around a face or a vertex counterclockwise to an edge variable e. Thereby, the edge
cycle is traversed by theLnext  orLEdge  function, resp., until the first edge is reached
a second time. Syntactically, we map the iteration clause to a for statement via the
macro mechanism of C++:forall_around_face(e,face){...}  and
forall_around_vertex(e,vertex){...} .

SPEC MolSurface;
TYPES EDGE, FACE, VERTEX;
FUNCTIONS

Sym, LEdge, REdge,
Lnext, Lprev: EDGE —> EDGE;

Left, Right: EDGE —> FACE;
Orig, Dest: EDGE —> VERTEX;
an_edge: FACE —> EDGE;
an_edge: VERTEX -> EDGE;

AXIOMS (for all EDGE e, FACE f, VERTEX v)

e.Sym().Sym() == e;
e.REdge().LEdge() == e;
e.Lnext() == e.Sym().REdge();
e.Lprev() == e.LEdge().Sym();
e.Sym().Orig() == e.Dest();
e.LEdge().Orig() == e.Orig();
f.any_edge().Left() == f;
v.any_edge().Orig() == v;

END MolSurface.

Fig. 4. Illustration of the MolSurface algebra
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Until now, we only specified the topological structure of molecular surfaces. To
yield the location of the vertices and some representative points of the patches, further
functions provide access to geometric attributes, e.g. location:VERTEX →
3D_POINT, and representative:FACE → 3D_POINT. Similar functions deliver the-
matic attributes and shape information.

In this section, we specified our patch-based representation of molecular surfaces. In
the following, we show how neighborhood queries are performed when they are based on
this specification, and in section 5, we explain our MolSurface algebra implementation.

4 Neighborhood Queries

As mentioned above, neighborhood queries are required for various applications such
as local surface approximation and surface segmentation. Therefore, we select such
patches or points from the surface that fulfill a particular condition, e.g. an euclidean
distance criterion in case of the approximation, or a criterion of similarity in case of the
segmentation.

Formally, we specify the conditional neighborhood of a patch p as follows: for any
molecular surface graph g and predicate c over a pair of patches, thec-neighborhood of
a patch p, nc(p), is defined to be the maximal connected subgraph of g restricted to the
patches v that fulfill the predicate c(v,p). Thus, for each v∈ nc(p), one of the following
properties holds: (i) c(v,p) and (v=p), or (ii) c(v,p) and an adjacent patch of v is in nc(p).
In other words we can say: nc(p) contains only patches p that (1) fulfill the condition c
together with p: c(v,p), and (2) are reachable from p via patches that all belong to nc(p).

The neighborhood query simply consists in the selection of a c-neighborhood: for
any patch p of the surface s, and any predicate c(•,•), select all patches from s that belong
to nc(p). In the following, we explain two applications of neighborhood queries.

Various applications of the general concept of neighborhood queries can be thought
of. The condition c can be a criterion of surface distance, equivalence, etc. We give three
examples taken from the context of docking retrieval.

(1) Segmentation of molecular surfaces.As a condition c, we provide a similarity cri-
terion, e.g. two patches are similar if they both are saddle-shaped, or if they have the
same sign for the electrostatic potential. We perform segmentation via a region growing
algorithm: therefore, we have to provide a set of patches to be used as sprouts. For each
of the patches in the sprout set, we perform a neighborhood query that is controlled by
condition c. The resulting segments may have various extensions on the surface and in
3D space, since they are not bound by a spatial distance criterion. Also, they may over-
lap. When providing a similarity criterion with a very low significance, a single segment
can include the whole surface.

(2) Local approximation of the molecular surface.As an early step in the computa-
tion of the local shape index [Koe 90] of a patch p, we approximate the neighborhood
of p on the surface, e.g. by a paraboloid (cf. figure 5). With a radius parameter r, the
locality of the approximation is controlled. For instance, a so called euclidean neighbor-
hood query consists in the selection of all the patches that are reachable from p within
the euclidean distance r. In this case, the condition c simply is a comparison: c(v,p) =
‘ ’.disteuclid v p,( ) r<



(3) Determination of local extrema.In [Con 86], knobs and holes are defined to be
surface points that have an extreme solid angle value with respect to their neighbors. As
a generalization, our neighborhood query supports specifying arbitrary neighborhood
radii leading to different degrees of locality. Thus, various radii can be investigated with
respect to their appropriateness for the purpose of docking retrieval.

Neighborhood query processing.After sketching some applications of the neighbor-
hood query, we now present a simple implementation. We perform neighborhood query
processing via a graph traversal algorithm:

Two container objects are used in our algorithm:result  andopen . In result ,
we collect all the patches that belong to the specified neighborhood, and deliver it at the
end of our procedure. The only methods applied to result are empty initialization, inser-

void Neighborhood ( PATCH* p, CONDITION* cond,
os_Set <PATCH*>& result)

{
 os_List <PATCH*> open();
 PATCH *h, *v;
 result.clear();

 if (cond->eval(p,p))
 { open.insert(p); result.insert(p); }

 while (h = open.remove_first())
 // expand current patch h:
 forall_around_face( e, h )
 {

 v = e.Right();
 if (not result.contains(v)

 and cond->eval(v,p))
 { result.insert(v); open.insert(v); }

 }
 return; // result is reference param

}

Fig. 5.Local approximation of the molecular surface with different radii r1 and r2

p

r1

p r2



tion, and lookup (contains). There is no relevance for any order on the patches, and,
therefore, an arbitrary data structure supporting fast lookup and fast insertion is appro-
priate to hold theresult  variable. We decided to hold theresult  collection explicit
in a container object, rather than to mark the patches that belong toresult . For the
latter, the database objects have to be modified during query processing, causing avoid-
able effort for concurrency control.

The other container object,open , is used to control the algorithm. It exactly con-
tains such patches that are known to qualify for the result, and that have to be expanded
later. A patch v that does not fulfill the condition c(v,p) will not be inserted intoopen ,
since none of its successors belongs to the specified neighborhood nc(p), except if it is
reachable from p by another path not containing v. Each step of the iteration begins with
the extraction of an element fromopen . We always fetch the first element fromopen ,
and since we always insert the new elements at the end, a breadth first search is per-
formed on the surface. This strategy could be changed to other (heuristic) strategies by
inserting new patches at appropriate positions intoopen . For instance, the insertion of
patches at the beginning ofopen  would result in a depth first search. The capability of
specifying the traversal strategy requiresopen  to be an ordered collection.

5 The TriEdge Data Structure

Up to here, we declared our objects of interest, specified access operations, and pre-
sented a basic query class with applications. We presented a specification for a surface
representation that supports the expression of neighborhood queries. Since the schema
is topology-based, providing connectivity information, neighborhood queries are sup-
ported very efficiently. The remaining question is how to implement this specification.
In this section, we explain our technique, whereas in section 6, the space reduction fac-
tor is shown in detail, and a first runtime evaluation of our prototype is presented.

Obviously, the quad-edge structure qualifies for this purpose. However, it requires
36 bytes per record, when adjusted to a multiple of four. Real molecular surfaces have
a size of some thousand patches and edges, for a common probe radius of 1.4 Å which
is the size of a water molecule. Therefore, the storage requirement for the surface topol-
ogy information of a single molecule is hundreds of kilobytes. In table 2, a sample is
given for a few molecules from the PDB, which are identified by the PDB entry code.
Since the number of proteins in the PDB currently is 3,000 [PDB 95], the size of our 3D
protein database for docking retrieval comes into the range of gigabytes. Therefore, an
efficient implementation is crucial.

Our data structure for the MolSurface specification reduces the storage requirement
for topology information by a factor of four compared to a straightforward implemen-
tation by the quad-edge structure. The approach to implement the MolSurface specifi-
cation consists of two steps: first, we reduce the complexity of the representation by
mapping the molecular surface graph to an equivalent but simpler graph structure. Sec-
ond, we exploit the strong regularity of the new structure as a key property for an effi-
cient data structure. Overall, we save space and, therefore, time for the reduced amount
of data transfer within the database system.

The main observation concerns the structure of molecular surfaces and the role of
the saddle patches: every saddle patch connects two convex patches and two concave



triangles. Both types, the convex and the concave patches, are surrounded by cycles of
saddle patches. This is analogous to faces and vertices of a 2D subdivision graph that
are surrounded each by a cycle of edges. We exploit the analogy to develop a new stor-
age method for molecular surfaces, and call the new structure thesimplified surface
graph (SSG) (figure 6).

Due to this strong relationship to molecular surfaces, an SSG also is a 2D subdivi-
sion graph, consisting of vertices, edges, and faces. However, instead of mapping the
vertices to corner points, the edges to arcs, and the faces to patches as we did for molec-
ular surfaces, we now associate the vertices to the concave triangles of the molecular
surface, the edges to the saddle patches, and the faces to the convex patches (cf. table 3).
The number of edges to be stored is reduced drastically: every edge of a molecular sur-
face graph belongs to exactly one saddle, and every saddle is bound by four (molecular)
edges. Therefore, a molecular surface graph has four times as many edges as saddle
patches, and, equivalently, four times as many edges than the SSG.

A second key observation leads us to a further reduction of the storage space. Since
an SSG is a 2D subdivision, we could use the quad-edge structure to store it in the data-
base. However, we can exploit a basic property of an SSG: all of the SSG vertices have
a degree of three, since there are only triangles among the concave patches, due to the

molecule
PDB
code

number
of atoms

number of
patches

number
of edges

size for quad-
edge records

Prealbumin, chain a 2PAB-A 872 3,710 7,380 260 kbytes
Prealbumin, chain b 2PAB-B 872 3,776 7,524 265 kbytes
Beta-trypsin 2PTC-E 1,629 5,606 11,160 393 kbytes
Trypsin inhibitor 2PTC-I 454 1,990 3,972 140 kbytes
Subtilisin novo 2SNI-E 1,983 6,220 12,396 436 kbytes
Chymotrypsin inhibitor 2SNI-I 513 2,116 4,224 149 kbytes

Tab. 2.Surfaces of real proteins

MolSurface edge

SSG edge

Fig. 6.Detail of a molecular surface: MolSurface edges and SSG edges



general position of the atoms:e.LEdge() 3 = e for everyEDGESSGe. Therefore, we
store the edge cycles around the SSG vertices in arrays with a fixed length of three,
rather than using any dynamic structure. This observation leads us to the TriEdge struc-
ture which consists of records that contain three SSG half-edges, all of them belonging
to the sameLEdgeSSG cycle. Similar to the quad-edge structure, an edge is represented
by a complex pointer(t,v)  that consists of a simple pointert  to the TriEdge record,
and of a componentv  (’view’) that specifies which SSG half-edge of theLEdge  cycle
is represented (cf. figure 7).

A TriEdge record contains three complex edge pointers to store the connectivity
information. Due to the mapping from SSG to molecular surface, a TriEdge record has
to provide access to seven patches: the concave triangle as an image of the SSG vertex,
the three saddle patches as images of the three SSG edges, and the three convex patches
as images of the SSG faces that are adjacent to the saddles. Since the corner points are
shared between the patches, we associate them to the TriEdge records rather than to the
patches. For SSG, the implementation of the basic operations would be as follows:

Since a TriEdge record represents three SSG half-edges, the view v is in the range
[0..2] . For molecular surfaces, a TriEdge record represents twelve half-edges (cf.

molecular surface molecular surface graph simplified surface graph

corner point vertex —

patch border arc edge —

concave triangle face vertex

saddle rectangle face edge

convex patch face face

Tab. 3.Association of molecular surfaces to graph components

LEdge SSG: (t,v) → (t, v ⊕3 1)

SymSSG: (t,v) → (*t).e[v]

EDGE

TriEdge* t
bits2 v

EDGE e[0]
EDGE e[1]
EDGE e[2]
FACE f[0]
…
FACE f[6]
Point p[0]
Point p[1]
Point p[2]

TriEdge t1 TriEdge t2

…
TriEdge t3

…
TriEdge t4

…

Fig. 7.The TriEdge data structure

t
v
t
v
t
v



figure 8a) and, therefore, requires the view v being in the range of[0..11] . Since all
of the elements of anLEdge  cycle are represented by the same TriEdge record, the
LEdge  operation requires no dereferencing of the TriEdge pointer of an edge, but only
a change of the view v. This function is the same for all edges and, therefore, can be
carried out via lookup in a constant tableLEDGE: [0..11] → [0..11] , imple-
mented simply as an array. For theSym operation, dereferencing a TriEdge pointer is
required in six cases, in the other six cases a change of the view is sufficient. When pro-
viding further arraysSYM, LEFT, andORIG, the basic MolSurf operations are imple-
mented as follows:

In figure 8b, the arrays mentioned are shown. The asterisk (*) entries in the array
SYM indicate that a traversal to the adjacent TriEdge record has to be performed. In
these cases, the view component v of the result has to be adjusted to refer to its correct
partner half-edge. This issue is delegated to the edge methodcorrect  which is imple-
mented as follows: (t,w).correct(v)→ (t, 2*w + (if odd(v) then 0 else 1)).

LEdge MolSurf : (t,v) → (t, LEDGE[v])

SymMolSurf : (t,v) → if (v >= 6) then (t, SYM[v])

else (*t).e[v/2].correct(v)

Left MolSurf : (t,v) → (*t).f[LEFT[v]]

Orig MolSurf : (t,v) → (*t).p[ORIG[v]]

b)

Fig. 8. a) a TriEdge record represents twelve molecular half-edges
b) four arrays to implement the basic operations

view 0 1 2 3 4 5 6 7 8 9 10 11
LEDGE 6 2 8 4 10 0 11 1 7 3 9 5
SYM * 0SSG * 1SSG * 2SSG 7 6 9 8 11 10
LEFT ➃ ➁ ➄ ➂ ➅ ➀ ➆ ➃ ➆ ➄ ➆ ➅
ORIG ➊ ➋ ➋ ➌ ➌ ➊ ➊ ➋ ➋ ➌ ➌ ➊

a)
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➋

➌

➀

➁

➂
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➄

➅➆
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56
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FACE f[0] : ➀
…
FACE f[6] : ➆
Point p[0] : ➊
Point p[1] : ➋
Point p[2] : ➌
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6 Evaluation

First, we investigate the space requirement for the TriEdge structure in comparison to
directly storing molecular surfaces using the quad-edge structure, and in comparison to
an implementation of the SSG by the quad-edge structure. We assume the vertices and
the patches to be referenced by 4-byte pointers, and the records being adjusted to a mul-
tiple of four bytes. In a packed representation, the bits for the ‘view’ component can be
held in a single 4-byte word. Let e denote the overall number of edges on the molecular
surface. Table 4 shows the reduction of storage space for molecular surfaces by the fac-
tor 3.9 when considering topological information as well as references to geometrical
information.

When changing from MolSurf via quad-edge to SSG via quad-edge, the number of
records is reduced by a factor of four, due to the mapping explained above. Figure 8a
helps to illustrate the reduction of factor six when changing from MolSurf via quad-edge
to SSG via TriEdge: a TriEdge record covers twelve (molecular) half-edges, whereas a
quad-edge record only represents two half-edges of the molecular surface. Thus, the
reduction factor for the number of records is  while representing the same
number of molecular (half-)edges.

We integrated the TriEdge structure into our object-oriented protein database system
based on the C++ interface of the OODBMS ObjectStore. From our prototype, we
obtained the following results of the runtime behavior of the TriEdge structure on an
HP-9000/735 workstation under HP-UX 9.01: inserting molecular surfaces takes only a
few seconds of elapsed time. The steps performed were reading the surface structure
from a text file, creating the TriEdge records as well as the patch objects, and connecting
the TriEdge records, all embraced by a transaction begin and commit (table 5).

From further experiments, we obtained the processing time for some selected euclid-
ean neighborhood queries. The elapsed time is shown in table 6 for various radii. We
determined the values as an average over 1,000 calls each, performed on a patch on the
protein 2pab.a. From the first experiments, we could not recognize any difference in the

storage requirement
MolSurf via
quad-edge

SSG via
quad-edge

SSG via
TriEdge

references per
record to …

adjacent records 4 4 3

patch corners 2 4 3

surface patches 2 4 7

bytes per record(bpr) 36 52 56

number of molecular half-edges
represented by a single record

2 8 12

number of records(#r) e e / 4 e / 6

total bytes (bpr · #r) 36 · e 13 · e 9.33 · e

factor of reduction 1 2.8 3.9

Tab. 4.Storage requirement for molecular surfaces by different techniques

12 2⁄ 6=



runtime between a breadth-first and a depth-first evaluation strategy. As expected, the
runtime grows nearly linear with respect to the number of neighbors (cf. figure 9).

molecule 2pab.a 2pab.b 2ptc.e 2ptc.i 2sni.e 2sni.i
number of patches 3,710 3,776 5,606 1,990 6,220 2,116
insertion time (sec) 6.1 6.1 8.8 3.3 9.7 3.6

Tab. 5. Insertion time for molecular surfaces into the database

radius (Å) number of neighbors msec per query

1.0 3 0.1

2.0 7 0.6

3.0 16 2.0

4.0 21 4.2

5.0 71 7.4

6.0 130 14.2

7.0 177 19.3

8.0 231 24.0

9.0 280 31.2

10.0 355 36.3

11.0 452 51.1

20.0 1,607 164.0

Tab. 6.Runtime of neighborhood queries for a patch of
the protein 2pab.a (average over 1,000)
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Fig. 9.Dependency of the runtime on the number of neighbors
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7 Conclusion

In this paper, we presented the notion of molecular surfaces as fundamental 3D objects
in database systems for molecular biology and computational chemistry. Along with the
geometric and the physicochemical properties, in particular the topological structure of
molecular surfaces has to be represented. As a basic operation, we defined the neighbor-
hood query that is required for applications like local surface approximation and surface
segmentation. The technical contribution of the paper is the introduction of the TriEdge
data structure as an implementation of molecular surface graphs providing efficient sup-
port for neighborhood query processing. It leads to a considerably reduced space
requirement compared to the well-known quad-edge structure. First experimental
results show the query processing time to be in the range of milliseconds. The insertion
time may be improved when integrating the molecular surface calculation program into
the database system, thus avoiding text file input.

In our future work, we will integrate (1) circular edges (these are not bound by any
corner point) that occur on molecular surfaces in some cases, e.g. when small atom
chains stick out from the molecule, and (2) convex patches that are bound by more than
one edge cycle which also may occur in some rare cases. After all, we will apply our
representation and query processing technique to the docking problem.

A very challenging problem is the clustering of TriEdge records: how can query pro-
cessing be improved by applying clustering techniques? In our prototype, we still rely
on the default clustering of the database management system. A promising approach is
managing the records by a spatial access method, since topological proximity implies
geometric vicinity but not necessarily vice versa. Also the question about the adequate
traversal strategy needs further investigation.
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