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Suppose that a certain organism’s genome has been
completely sequenced. Then suppose that structures
and functions of all its gene products have been
thoroughly identified. Suppose further that a giant
map of the entire metabolic pathways has been drawn
flawlessly. Then what? Would we have conquered the
cell? The answer is clearly ‘no’because the overall
‘behavior’ of the cell would still not be understood.

To say that we understand the overall behavior of
the cell, we must be able to answer questions such as:
‘How would the cell behave if we change the
environment, for example, by adding or decreasing a
certain substance?’and ‘What is the result if a certain
gene gets knocked out or over-expressed?’Slightly
more sophisticated questions include: ‘What gene
needs to be inserted for the cell to behave in such a
way’and ‘What is the ideal culture medium in which
to maximize the cell’s ability to do such a thing?’

There is no doubt that computer simulation is
required to understand dynamic behaviors of cellular
metabolism. Virtual experiments in computers, often
called ‘in silico’ experiments, are not just useful but
indispensable for biology because of the large amount
of data generated from the genome, proteome,
transcriptome and metabolome projects.

‘Customized medicine’based on single nucleotide
polymorphisms (SNPs) in which an appropriate dose
of medicine is selected and administered to a specific
patient based on his/her SNP data, is not an exception.
When a large amount of SNP information from many
different individuals is collected, the susceptibility of
the patient to a certain drug can be statistically
predicted by analysing a specific locus of a specific gene
in his/her genome for SNPs. This statistical method is
useful when a polymorphism of one specific gene
causes a polymorphism of the phenotype (monogenic),
in which case, analysis of the genotype can lead to a

precise conclusion, without in silico experiments, as to
what phenotype or physical trait that person has. It is
not so easy, however, to understand a phenotype in
which multiple genes are involved (polygenic).

For example, suppose it has been shown statistically
that a susceptibility to a certain drug is high (+) when a
person possesses a type A gene; the susceptibility is also
high (+) when possessing a type B gene at another locus.
When a person has both A and B gene types, however,
there is no guarantee that his/her susceptibility to that
drug will be twice as high (+/+); it is possible that his/her
susceptibility would be low (−). Furthermore, suppose
having a type C gene at a different locus is statistically
known to result in low susceptibility (−). Then, what
will happen when a patient has A and C gene types? It is
possible, for example, that the susceptibility is high (+)
when the person only has A and C gene types but very
low (−/−) if the person has a combination of B and C gene
types, and high (+) again with combination of A, B and
C, and so on. This non-monotonic nature of the genetic
system is the reason why statistical analyses alone are
limited in understanding cellular behaviors. Computer
models and in silico experiments are necessary to
understand and predict phenotypes of the cell,
especially when they are polygenic phenotypes. After
all, most biological and pathological phenomena in
which the pharmaceutical industry has a great
interest, such as cancer and allergy, are polygenic.

It is still an open question as to whether or not it is
feasible to construct a computer model of a whole living
cell that is sufficiently sophisticated to predict answers
to the types of questions mentioned above. It is thought
that the task of whole-cell modeling is too difficult to be
achieved in the foreseeable future. Although no attempts
were made towards whole-cell modeling until the late
1990s, the importance of computer simulation of cellular
metabolisms has been suggested and emphasized
since the 1980s. Cellular processes that are important
subsystems of the cell have been modeled and
simulated by many different groups: the regulation of
gene expression1–5, cell cycle6,7, signal transduction8 and
metabolic pathways9–12. However, although these models
made significant contributions to the development of
in silico biology, the programs were only able to handle
specific subsystems, and it was difficult to combine
different subsystem models into one single-cell model.

The first cell model

To conquer and directly challenge the task of whole-cell
modeling, the E-CELL Project (Ref. 13) was initiated in
1996 at the Shonan-Fujisawa Campus of Keio University
(Fujisawa, Japan), following the publication of the
entire genome sequence of Mycoplasma genitalium
(http://www.tigr.org/tdb/mdb/mdbcomplete.html).
M. genitalium has the smallest genome (580 kb) and
the smallest number of genes (~480) of all living
organisms currently known and its genomic sequences
have been published (see http://www.tigr.org/). The size
of its genome is one order of magnitude less than that
of Escherichia coli, and thus is an ideal candidate for
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whole-cell modeling. Approximately 80% of its 480
genes share nucleotide sequence homology with other
genes of which the function could be predicted when
searched for on BLAST. The functions of the remaining
20% of the genes, however, are still unknown and it was
soon realized that it would be difficult to reconstruct
the whole organism without knowing the functions of
the remaining genes. However, it has been demonstrated
in intensive gene-knock-out studies by The Institute for
Genomic Research (TIGR) that many of the 480 genes
are not always necessary for M. genitalium to survive.
Therefore, in collaboration with TIGR, a minimal set
of genes sufficient and necessary for its survival and

for maintenance of its homeostasis were selected
(Table 1) and the first hypothetical ‘virtual cell’with
the 127 genes was constructed (Fig. 1).

This virtual self-surviving cell (SSC) model takes
up glucose into the cytoplasm, metabolizes the glucose
through the glycolysis pathway and produces ATP as
an energy source. The ATP is consumed mainly for
protein synthesis; the 127 genes are transcribed by
RNA polymerase into mRNAs, and then translated into
proteins by ribosome. Proteins are modeled to degrade
spontaneously over time and so the cell has to constantly
produce protein to sustain life. The membrane
structure of the cell is also modeled to degrade over time;
thus, the cell has a phospholipid biosynthesis pathway
for biosynthesis of the cell membrane, uptaking fatty
acid and glycerol, consuming ATP and generating a
phospholipid bilayer, which forms a cell membrane.
A constant supply of energy (ATP) is required to
maintain protein and membrane synthesis, and thus
glucose is essential for the survival of the virtual cell.

E-CELL simulation system

The SSC model has 105 protein-coding genes (Table 2)
and 22 RNA-coding genes, and consists of 495 reaction
rules. Each reaction rule defines what to do within one
single time step (one millisecond, in this case). Reactions
include: (1) enzymatic reactions that increase and
decrease the quantity of its substrate(s) and product(s),
respectively; (2) complex formations, in which multiple
substrates form a complex; (3) transportations that
change the location of certain substances; and
(4) stochastic processes such as a transcriptional
factor binding to a specific site of the chromosome.
The E-CELL system also accepts user-defined
reactions, making it capable of handling many other
phenomena such as diffusion and variable cell volume.

When simulation of the SSC starts, all the reaction
rules are executed in parallel (in practice pseudo-
parallel), and the overall behavior of the cell can be
observed through various graphic interfaces (Fig. 2).
The dynamic changes in the amount (molecular
number) of various substances inside the cells can be
observed using an interface (‘Tracer Window’,
presented as ‘Traced substances’). In Fig. 2, C00031E
and C00186E show temporal patterns of change in
extracellular glucose and lactic acid (waste end product),
respectively. It can be seen that the cell is ‘living’steadily
because extracellular glucose is gradually decreasing
and lactic acid is reciprocally increasing. If, at a
certain time point, the extracellular glucose level is
set to 0, the cell starts to starve and will eventually
become incapable of glucose uptake. The activity of a
specific biochemical reaction can be monitored using
the ‘Reactor Window’ (Fig. 2, ‘Reactor’panel), which
shows the number of molecules being processed within
a single time step. The amount of substrates can be
altered by the user, even in the middle of a simulation,
using the ‘Substance Window’(Fig. 2, ‘Substance’panel). 

Finally, the expression of all genes can be monitored
simultaneously using the ‘Genemap Window’(Fig. 2).
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Table 1. A summary of the 127 genes of the self-surviving cell

Gene type Mycoplasma Other Total

genitalium

GIycolysis 9 0 9

Lactate fermentation 1 0 1

Phospholipid biosynthesis 4 4 8

Phosphotransferase system 2 0 2

Glycerol uptake 1 0 1

RNA polymerase 6 2 8

Amino acid metabolism 2 0 2

Ribosomal L subunit 30 0 30

Ribosomal S subunit 19 0 19

rRNA 2 0 2

tRNA 20 0 20

tRNA ligase 19 1 20

Initiation factor 4 0 4

Elongation factor 1 0 1

Protein coding genes 98 7 105

RNA coding genes 22 0 22

Total 120 7 127

The column labeled ‘M. genitalium’ represents the number of genes taken from the genome of
Mycoplasma genitalium. The column labelled ‘Other’ represents the number of genes that are not
found in the gene list of M. genitalium and thus have been taken from other organisms, such as
Escherichia coli. The 127 genes include 22 RNA coding genes.
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Fig. 1. The ‘self-surviving cell model’. This minimal cell has 127 genes, just sufficient to maintain
protein and membrane structure, by generating ATP through the glycolysis pathway.
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Table 2. A list of protein-coding genes in the virtual cell

ID Name ID Name

MG005 Serine–tRNA ligase MG215 6-Phosphofructokinase (pfkA)

MG021 Methionine–tRNA ligase MG216 Pyruvate kinase (pyk)

MG023 Fructose–bisphosphate aldolase (tsr) MG232 Ribosomal protein L21

MG033 Glycerol uptake facilitator (glpF) MG234 Ribosomal protein L27

MG035 Histidine–tRNA ligase MG249 RNA polymerase sigma S subunit

MG036 Aspartate–tRNA ligase MG251 Glycine–tRNA ligase

MG038 Glycerol kinase (glpK) MG253 Cysteine–tRNA ligase

MG041 Protein histidine (HPr)(ptsH) MG257 Ribosomal protein L31

MG069 Phosphotransferase enzymeII (ptsG) MG266 Leucine–tRNA ligase

MG070 Ribosomal protein S2 MG283 Proline–tRNA ligase

MG081 Ribosomal protein L11 MG292 Alanine–tRNA ligase

MG082 Ribosomal protein L1 MG300 Phosphoglycerate kinase (pgk)

MG087 Ribosomal protein S12 MG301 G3PD (gapA)

MG088 Ribosomal protein S7 MG311 Ribosomal protein S4

MG089 Elongation Factor G MG325 Ribosomal protein L33

MG090 Ribosomal protein S6 MG334 Valine–tRNA ligase

MG092 Ribosomal protein S18 MG340 RNA polymerase beta subunit

MG093 Ribosomal protein L9 MG341 RNA polymerase beta subunit

MG111 Phosphoglucose isomerase B (pgiB) MG344 Lipase

MG113 Asparagine–tRNA ligase MG345 Isoleucine–tRNA ligase

MG114 PGP synthase (pgsA) MG351 Inorganic pyrophosphate (ppa)

MG126 Tryptophan–tRNA ligase MG361 Ribosomal protein L10

MG136 Lysine–tRNA ligase MG362 Ribosomal protein L7

MG142 Translation initiation factor 2 MG363 Ribosomal protein L32

MG150 Ribosomal protein S10 MG363.01 Ribosomal protein S20

MG151 Ribosomal protein L3 MG365 Methionyl-tRNA formyltransferase

MG152 Ribosomal protein L4 MG375 Threonine–tRNA ligase

MG153 Ribosomal protein L23 MG378 Arginine–tRNA ligase

MG154 Ribosomal protein L2 MG407 Enolase (eno)

MG155 Ribosomal protein S19 MG417 Ribosomal protein S9

MG156 Ribosomal protein L22 MG418 Ribosomal protein L13

MG157 Ribosomal protein S3 MG424 Ribosomal protein S15

MG158 Ribosomal protein L16 MG426 Ribosomal protein L28

MG159 Ribosomal protein L29 MG429 Protein phosphotransferase (ptsI)

MG160 Ribosomal protein S17 MG430 Phosphoglycerate mutase (pgm)

MG161 Ribosomal protein L14 MG431 Triosephosphateisomerase (tpiA)

MG162 Ribosomal protein L24 MG433 Transcription elongation factor Ts

MG163 Ribosomal protein L5 MG437 CDP-diglyceride synthetase (cdsA)

MG164 Ribosomal protein S14 MG444 Ribosomal protein L19

MG165 Ribosomal protein S8 MG446 Ribosomal protein S16

MG166 Ribosomal protein L6 MG451 Transcription elongation factor Tu

MG167 Ribosomal protein L18 MG455 Tyrosine–tRNA ligase

MG168 Ribosomal protein S5 MG460 L-lactate dehydrogenase (ldh)

MG173 Translation initiation factor 1 MG462 Glutamate–tRNA ligase

MG174 Ribosomal protein L36 MG466 Ribosomal protein L34

MG175 Ribosomal protein S13 V1001 Nucleoside-phosphate kinase

MG176 Ribosomal protein S11 V1002 Nucleoside-diphosphate kinase

MG177 RNA polymerase alpha core subunit V1003 Glutamine–tRNA ligase

MG178 Ribosomal protein L17 V4001 Acylglycerol lipase

MG194 Phenylalanine–tRNA ligase alpha V4002 Glycerol-1-phosphatase

MG196 Translation initiation factor 3 EC1238 Phosphatidylglycerophosphatase

MG197 Ribosomal protein L35 EC3928 Diacylglycerolkinase (dgkA)

MG198 Ribosomal protein L20

These 105 genes plus 22 RNA coding genes constitute the minimal cell.



Each icon represents each corresponding gene, and
exhibits the amount of mRNA of that gene (molecular
number). A specific gene can be easily knocked-out by
clicking its icon; it is thus possible to conduct real-time
knock-out experiments in silico. Clicking the icon again
can reactivate a knocked-out gene.

Final ’desperate efforts’ before starvation

Even this simple cell model sometimes shows
unpredictable behavior and has delivered biologically
interesting surprises. When the extracellular glucose
is drained and set to be zero, intracellular ATP
momentarily increases and then decreases (Fig. 2,
‘Traced substances’panel, substance ID C00002). 
At first, this finding was confusing. Because ATP is
synthesized only by the glycolysis pathway, it was
assumed that ATP would decrease when the glucose,
the only source of energy, becomes zero. After months
of checking the simulation program and the cell model
for errors, the conclusion is that this observation is
correct and a rapid deprivation of glucose supplement
can lead to the same phenomenon in living cells.

The reason is, in fact, clear. In glycolysis, one
molecule of glucose produces two molecules of ATP.
In more detail, however, two molecules of ATP are
consumed in the first part of glycolysis and then four
molecules of ATP are synthesized in the second part,
producing two net molecules of ATP. Thus, when
glucose is rapidly deprived, first consumption of ATP
stops and then, a few moments later, ATP synthesis
stops. The slight difference in time causes a transient
increase in ATP. This momentary increase in the level
of ATP, is of great interest and is as if the cell undergoes
a final ‘desperate effort’when it is rapidly starved.

Virtual erythrocytes

Obviously, the SSC model described above is only a
hypothetical cell; no such cells exist in nature. Thus, it was

decided to model living cells so that the simulation results
could be evaluated. Human erythrocytes were chosen for
the model because intracellular metabolism is limited in
human erythrocytes and because they do not replicate,
transcribe or translate genes; also, there are already
several studies on the modeling of erythrocytes14–16. It
is possible to compare computer models with real red
blood cells because a considerable amount of experimental
data about red blood cells has accumulated17,18. Recently,
the construction of a prototype of human erythrocytes
using the E-CELL System has been completed (Fig. 3).

In human erythrocytes, the major metabolic
pathways are glycolysis, the pentose phosphate
pathway and nucleotide metabolism. In addition,
there are abundant hemoglobins that carry oxygen
from the lungs to peripheral tissues. Thus, the
erythrocyte is a ‘bag’packed with hemoglobins that
maintain several metabolic pathways for ion transport
to maintain homeostasis of intracellular osmosis.

An E-CELL model of the human erythrocyte has
been developed, by defining reaction rules for all
these metabolisms based on the previous erythrocyte
model14–17. All the kinetic equations and parameters
used in the model were obtained from previously
published experimental data. After tuning the kinetic
parameters, the E-CELL erythrocyte model reached a
steady state in which quantities of intermediate
metabolites inside the virtual cell are comparable with
the experimental data of living erythrocytes. We are
currently extending and improving the erythrocyte
model for a more accurate simulation, by taking into
account osmotic pressure, pH and variable cell volume.

Using the E-CELL for pathological analyses

It is possible to perform in silico experiments in which
the function of an enzyme is inhibited, and to simulate
the behavior of human erythrocytes from hereditary
anemic patients using the E-CELL model (Fig. 4).
Using the simulated erythrocytes on the E-CELL
program, the activity of aldolase is blocked in our
virtual erythrocytes; aldolase (fructose bisphosphate
aldolase) converts fructose-1,6-bis-phosphate (X12) to
glyceraldehyde-3-phosphate (X14) and dihydroxy-
acetone-phosphate (X13). Aldolase-deficient humans
are susceptible to hemolytic anemia. With aldolase-
deficiency, the reactant fructose-1,6-bis-phosphate
(X12) is markedly increased and accumulated,
whereas the reaction products glyceraldehyde-3-
phosphate (X14), dihydroxy-acetone-phosphate (X13)
and further metabolites downstream of this reaction
are significantly decreased. Although this is an
expected result, such in silico experiments might give
unexpected results, as we have seen in the SSC model.

One major advantage of these in silico experiments is
that they can be repeated automatically, for all enzymes
at various levels of inhibition, resulting in lists of
enzyme deficiencies that could kill, perturb, or preserve
the cell. The results might suggest some biologically
interesting phenomena, which could then be verified by
in vitro or in vivo experiments. In addition, the results
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Fig. 2. Feature of the
E-CELL simulation
system. The user can
monitor dynamic
changes of substance
quantities and reaction
fluxes via various
graphical interfaces.
Quantities of any
substance can also be
altered during the
simulation.



would provide kinetic sensitivities of different enzymes.
If a small change in enzyme activity results in a
dramatic change inside the cell, the enzymatic reaction
is ‘sensitive’and therefore would need accurate kinetic

parameter values. However, other enzymatic
reactions that are not kinetically sensitive would
need only rough values for their kinetic parameters.

In this way, it will be possible to reproduce the
behavior of human erythrocytes not only in normal
physiological conditions but also in abnormal
pathological conditions. Thus, one could investigate
how an abnormal anemic condition occurs in human
erythrocytes, for example, in patients with hereditary
oxygen deficiency or patients with drug-induced
inhibition of specific enzymes. Because there are many
known cases of anemia with abnormal erythrocytes,
computer simulation will have an important role in
the development of remedies of many human diseases.

SNPs and other types of genetic polymorphism
could result in different enzymes with different kinetic
parameters, producing different fluxes and therefore
different metabolisms inside the cell. By assigning
kinetic parameters based on SNP information, it
might become possible to conduct ‘personalized
simulation’of an individual’s cellular metabolism.
Such simulation could, in the future, play an
important role in ‘customized medicine’, by predicting
appropriate drugs and dosage for individual patients.

Future prospects

In addition to the ‘virtual self-surviving cell’ and the
‘human erythrocyte model’described other E-CELL
models are currently under construction; a
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Fig. 3.The human erythrocyte model. It has three major metabolic
pathways: (1) glycolysis; (2) the pentose phosphate pathway; and
(3) nucleotide metabolism, as well as Na+/K+ pumps, transport systems,
and magnesium complexation. Abbreviations: ADA; adenosine deaminase;
ADE, adenine; ADPRT, adenine phosphoribosyl transferase; AK, adenosine
kinase; ALD, aldolase; AMP; adenosine monophosphate;
AMPDA,adenosine monophosphate deaminase; APK, adenylate kinase;
CAH, carbonic anhydrase; DHAP, dihydroxy acetone phosphate;
DPG,diphosphogrycerate; DPGase, diphosphogrycerate phosphatase;
DPGM, diphosphogrycerate mutase; EN, enolase; E4P, erythrose 4-
phosphate; FDP, fructose 1,6-diphosphate; F6P, fructose 6-phosphate;
G6Pglucose 6-phosphate; GA3P, glyceraldehyde 3-phosphate; GAPDH,
glyceraldehyde phosphate dehydrogenase; GLC, glucose; GLCtr, glucose
transport process; GO6P, gluconate 6-phosphate; GSH, glutathione;
GSHox,glutathione turnover; GSSGR, glutathione reductase (NADPH);
Hb,hemoglobin; HGPRT, hypoxanthanine-guanine phosphoryl transferase;
HK, hexokinase; HX, hypoxanthine; HXtr, hypoxanthine transport process;
IMP, inosine monophosphate; IMPase, inosine monophosphatase;
INO, inosine; LAC, lactate; LACtr, lactate transport process; LDH, lactate
dehydrogenase; mOsm, osmolarity; 2PG, 2-phosphogrycerate;
3PG,3-phosphogrycerate; 6PGLase, 6-phosphogluconolactonase;
6PGODH, 6-phosphogluconate dehydrogenase; PEP, phospho-
enolpyruvate; PFK, phosphofructokinase; PGI, phosphoglucoisomerase;
PGM, phosphoglyceromutase; Pi, inorganic phosphate; PNPase, purine
nucleotide phosphorylase; PRM,phosphoribomutase; PRPP,
5-phosphoribosyl 1-phosphate; PRPPsyn, phosphoribosyl pyrophosphate
synthetase; PYRtr, pyruvate transport process; PYR, pyruvate; R5P, ribose 5-
phosphate; RIP, ribose 1-phosphate; Ru5P, ribulose 5-phosphate;
S7P,sedoheptulose 7-phosphate; TA, transaldolase; TK1, transketolase I;
TPI, triose phosphate isomerase; VOL, volume; X5P, xylulose 5-phosphate;
X5PI, xylulose 5-phosphate isomerase.
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‘mitochondria model’and a ‘signal transduction
model’ for the chemotaxis of E. coli. Examples of other
successful systems for integrative simulation of the
cell include DBSolve by Goryanin and colleagues19

and the V-Cell by Schaff and co-workers20.
One of the major problems in constructing

large-scale cell models is lack of quantitative data.
Most of the biological knowledge available is
qualitative (such as functions of genes, pathway
maps, which proteins interact with what) but for
simulation quantitative data (such as concentrations
of metabolites and enzymes, flux rates, kinetic
parameters and dissociation constants) are needed.
A major challenge is to develop high-throughput
technologies for measurement of inner-cellular
metabolites. A large amount of data for a variety of
cell states can then be collected with the technologies

to construct quantitative models, and the models can
be refined iteratively until the simulation results
match the data.

For this new type of simulation-orientated biology,
we set up the Institute for Advanced Biosciences of
Keio University (http://bioinfo.sfc.keio.ac.jp/IAB/).
The institute consists of three centers for metabolome
research, bioinformatics, and genome engineering,
respectively. The ultimate goal of this international
research institute is to construct a whole-cell model
in silico based on a large amount of data generated by
high-throughput metabolome analyses, and then to
design a novel genome based on the computer
simulation and create real cells with the novel
genome by means of genome engineering.

In the USA, the National Institute of General
Medicine Sciences (NIGMS) has announced the
Alliance for Cellular Signaling (AFCS) for analyzing
signal transduction of cardiomyocytes and B cells from
the mouse. The ultimate goal of the project is ‘to create
virtual cells’of these particular cell types
(http://www.nih.gov/news/pr/sep2000/nigms-05.htm).
In addition, the Department of Energy (DOE) has set
up a Microbial Cell Project (MCP), of which the
ultimate goal is to construct a ‘virtual microbe’ in silico
(http://www.microbialcellproject.org), and the Special
Interest Group of Biological Simulation (SIGSIM) has
been formed under the International Society for
Computational Biology (ISCB) for the purpose of
effective communication among scientists working on
large scale cell modeling (http://www.iscb.org).

Summary

The cell is never ‘conquered’until its total behavior is
understood and the total behavior of the cell is never
understood until it is modeled and simulated.
Whole-cell modeling, which was thought intractable
until recently, has suddenly become realistic. There is
no doubt that in silico construction of complex living
cells is an exciting scientific challenge and we are just
opening the door to this new area of biological
research in the 21st century.
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Fig. 4. Human
erythrocyte with aldolase
deficiencies. The E-CELL
system can be used to
conduct virtual
experiments for
pathological analyses by
substituting enzymatic
parameters.


